Stereoselective Total Synthesis of Decytospolides A and B Starting from D-Mannitol¹)

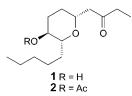
by Malampati Srilatha and Biswanath Das*

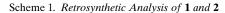
Natural Products Chemistry Division, CSIR- Indian Institute of Chemical Technology, Hyderabad-500 007, India (phone: +91-40-7193434; fax: +91-40-7160512; e-mail: biswanathdas@yahoo.com)

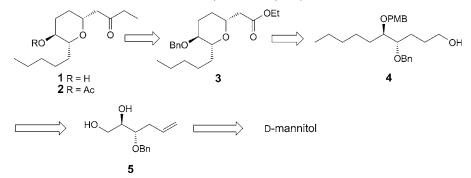
The stereoselective total synthesis of decytospolides A and B, two naturally occurring pyran derivatives, has been achieved using D-mannitol as the starting material. The intramolecular oxa-*Michael* reaction has been employed to construct the tetrahydropyran ring of the molecules and *Weinreb* amide formation to generate their side chain with a keto function.

Introduction. – Two new tetrahydropyran derivatives, decytospolides A and B (1 and 2, resp.; *Fig.*) were isolated [1] from *Cytospora* sp., an endophytic fungus from *Ilex canariensis*. The cytotoxic properties of these two compounds were evaluated, and 2 was found to be active against the tumor cell lines, A549 and QGY [1].

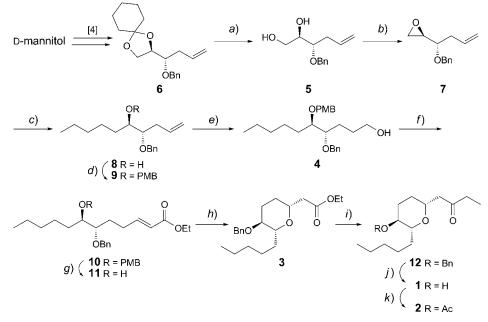
In continuation of our work [2] on the stereoselective construction of natural products, we have recently accomplished the total synthesis of 1 and 2. While our synthetic work was in progress, some reports on the synthesis of these molecules appeared [3]. Herein, we report our alternative total synthesis of 1 and 2 starting from D-mannitol (*Fig.*).




Figure. Structures of decytospolides A and B (1 and 2, resp.)


Results and Discussion. – The retrosynthetic analysis (*Scheme 1*) indicates that the compounds **1** and **2** can be prepared from the ester **3**, which in turn can be obtained from the alcohol **4**. The alcohol **4** can be generated from the ene-diol **5** derived from D-mannitol.

Our synthesis was initiated (*Scheme 2*) by converting D-mannitol to the alkene **6** as described in [4]. The acetal group of the latter was subsequently deprotected with *Dowex 50* in MeOH to furnish the ene-diol **5**. Selective tosylation of the primary OH group of **5** with TsCl, Et₃N, and a catalytic amount of Bu₃SnO, followed by treatment


¹⁾ Part 77 in the series, 'Synthetic studies on natural products'.

^{© 2015} Verlag Helvetica Chimica Acta AG, Zürich

Scheme 2. Synthesis of Decytospolides A and B

a) Dowex H^+ resin, MeOH, r.t., 20 h; 91%. *b) i*) Et₃N, Bu₃SnO, TsCl, dry CH₂Cl₂, 0° – r.t., 2 h; 89%; *ii*) K₂CO₃, dry MeOH, r.t., 1 h; 94%. *c*) BuMgBr, dry THF, 0° – r.t., 3 h, 93%. *d*) NaH, 4-Methoxybenzyl chloride (PMBCl), THF, 0° – r.t., 8 h; 85%. *e) i*) BH₃·Me₂S, dry THF, 0° – r.t., 3 h; *ii*) NaOH, 30% H₂O₂, 2 h; 87%. *f*) *i*) 2-Iodoxybenzoic acid (IBX), CH₂Cl₂, r.t., 3 h; *ii*) Ph₃P=CHCOOEt, benzene, reflux, 3 h; overall 88%. *g*) 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), CH₂Cl₂/H₂O (9:1), 0° – r.t., 1 h; 86%. *h*) 'BuOK, dry THF, -20° , 1 h; 73%. *i*) *i*) (MeO)MeNH·HCl, 'PrMgCl, THF, -20° , 1 h; *ii*) EtMgI, dry THF, 0° – r.t., 2 h; overall 76%. *j*) Li, Naphthalene, dry THF, -25° , 2 h; 86%. *k*) Ac₂O, Et₃N, CH₂Cl₂, 0° – r.t., 4 h; 90%.

with K_2CO_3 in dry MeOH, afforded the chiral epoxide 7. The epoxy ring of 7 was opened with BuMgBr to give the secondary alcohol 8, and its free OH group was protected as 4-methoxybenzyl (PMB) ether 9. Next, 9 was treated with $BH_3 \cdot Me_2S$ and

subsequently with alkaline H_2O_2 to afford the primary alcohol 4, which underwent oxidation with 2-iodoxybenzoic acid (IBX). The corresponding aldehyde was subjected to *Wittig* olefination with Ph₃P=CHCOOEt to form the major (*E*)-isomer of the α,β unsaturated ester 10 ((*E*)/(*Z*) 95:5) [5]. The PMB group of 10 was removed using DDQ to yield the hydroxy ester 11. The latter was treated with 'BuOK in dry THF to undergo an oxa-*Michael* reaction [6] to give the tetrahydropyran derivative 3 [7]. Thus, the skeleton of the target molecules, 1 and 2, has been constructed. Compound 3 was then transformed to the corresponding *Weinreb* amide using (MeO)MeNH · HCl and 'PrMgCl in THF, which was then treated with EtMgI in THF to afford the ketone 12 [8]. Removal of the Bn group of 12 yielded the naturally occurring decytospolide A (1), and the acetylation of the latter furnished decytospolide B (2). The optical and spectroscopic properties of 1 and 2 were found to be identical to those reported earlier [1][3].

In conclusion, we have described the stereoselective total synthesis of two natural tetrahydropyran derivatives, decytospolides A and B (1 and 2, resp.), starting from D-mannitol and by applying intramolecular oxa-*Michael* reaction and *Weinreb* amide formation as the key steps.

The authors thank UGC and CSIR, New Delhi, for financial support.

Experimental Part

General. All commercially available reagents were used directly without further purification unless otherwise stated. The solvents used were all of anal. reagent grade and were distilled under N₂ where necessary. All reactions were performed in pre-dried apparatus under N₂. TLC: *Merck* silica-gel 60 F_{254} plates. Column chromatography (CC): silica gel 60–120 mesh (SiO₂; *Qingdao Marine Chemical*, P. R. China). Optical rotations: *JASCO DIP 360* digital polarimeter at 25°. IR Spectra: *Perkin-Elmer RX* FT-IR spectrophotometer. NMR Spectra: *Gemini* 200 MHz spectrometer with TMS as internal standard, in CDCl₃; the chemical shifts, δ in ppm; the coupling constants, *J* in Hz. ESI-MS: *VG-Autospecmicromass*. HR-MS: *QSTAR XL*, Hybrid MS system (*Applied Biosystems*).

(2R,3S)-3-(Benzyloxy)hex-5-ene-1,2-diol (5). To a soln. of 6 (10.5 g, 34.77 mmol) in MeOH (4 × 20 ml) was added *Dowex* H⁺ resin (90 g), and the mixture was stirred at r.t. for 20 h. After completion of the reaction, the mixture was filtered, and MeOH was evaporated under reduced pressure to afford a crude product, which was purified by CC to afford pure 5 (7.0 g, 91%). $[a]_{25}^{25} = +33.9$ (c = 1.0, CHCl₃). IR: 3410, 1641, 1453, 1211, 1074. ¹H-NMR (200 MHz, CDCl₃): 7.49–7.40 (m, 2 H); 7.38–7.24 (m, 3 H); 5.92–5.78 (m, 1 H); 5.19–5.02 (m, 2 H); 4.64 (d, J = 14.0, 1 H); 4.49 (d, J = 14.0, 1 H); 4.23–4.19 (m, 1 H); 3.78–3.68 (m, 2 H); 3.62–3.54 (m, 1 H); 2.50–2.31 (m, 2 H). ¹³C-NMR (50 MHz, CDCl₃): 138.0; 134.1; 128.4; 127.9; 117.9; 80.1; 72.2; 63.1; 34.7. ESI-MS: 245 ($[M + Na]^+$). Anal. calc. for C₁₃H₁₈O₃ (222.13): C 70.24, H 8.16; found: C 70.14, H 8.14.

(2R)-2-[(1S)-1-(Benzyloxy)but-3-en-1-yl]oxirane (7). For spectral data, see [4b].

(4S,5R)-4-(Benzyloxy)dec-1-en-5-ol (8). Compound 7 (5.0 g, 24.51 mmol) was dissolved in dry THF (2 × 20 ml), and the mixture was cooled to 0°. BuMgBr (Mg: 44.12 mmol, BuBr: 36.76 mmol) was added slowly, and the mixture was stirred at the same temp. for 3 h. After completion of the reaction, the mixture was treated with sat. aq. NH₄Cl soln. (20 ml) and extracted with CH₂Cl₂ (3 × 30 ml). The combined extracts were dried (Na₂SO₄), and concentrated under reduced pressure. The residue was purified by CC to afford 8 (5.97 g, 93%). [a]²⁵₂₅ = +4.3 (c = 1.0, CHCl₃). IR: 3450, 1608, 1513, 1251. ¹H-NMR (200 MHz, CDCl₃): 7.38 (s, 5 H); 5.95 – 5.85 (m, 1 H); 5.13 – 5.04 (m, 2 H); 4.59 (q, J = 14.0, 2 H); 3.82 – 3.75 (m, 1 H); 3.45 – 3.40 (m, 1 H); 2.46 – 2.38 (m, 1 H); 2.33 – 2.26 (m, 1 H); 1.51 – 1.42 (m, 2 H); 1.35 – 1.23 (m, 6 H); 0.88 (t, J = 7.0, 3 H). ¹³C-NMR (50 MHz, CDCl₃): 138.5; 135.4; 129.4; 128.4;

127.9; 117.1; 82.0; 71.9; 71.1; 33.3; 31.8; 31.7; 25.9; 22.5; 14.1. ESI-MS: 285 ($[M + Na]^+$). Anal. calc. for $C_{17}H_{26}O_2$ (262.19): C 77.82, H 9.99; found: C 77.69, H 9.94.

1-([[(4S,5R)-4-(Benzyloxy)dec-1-en-5-yl]oxy]methyl)-4-methoxybenzene (9). Compound 8 (5.8 g, 22.14 mmol) in dry THF (20 ml) was added to a suspension of NaH (1.33 g, 33.2 mmol) in THF (2 × 20 ml) under N₂ at 0°, and the mixture was stirred for 30 min. To this mixture, 4-methoxybenzyl chloride (PMBCl; 3.6 ml, 26.56 mmol) was added, and the mixture was stirred for 8 h at r.t. The reaction was quenched with sat. aq. NH₄Cl soln. (20 ml), and the mixture was extracted with AcOEt. The org. layer was washed with H₂O (20 ml), brine (10 ml), dried (Na₂SO₄), evaporated in*vacuo* $, and purified by CC to afford 9 (7.35 g, 85%). [<math>\alpha$]₂₅²⁵ = +5.0 (c=0.3, CHCl₃). IR: 1611, 1511, 1460, 1246. ¹H-NMR (200 MHz, CDCl₃): 7.38 – 7.30 (m, 5 H); 7.27 (d, J = 8.0, 2 H); 6.85 (d, J = 8.0, 2 H); 5.93 – 5.84 (m, 1 H); 5.13 – 5.04 (m, 2 H); 4.59 (q, J = 14.0, 2 H); 4.45 (q, J = 14.0, 2 H); 3.79 (s, 3 H); 3.56 – 3.52 (m, 1 H); 3.50 – 3.46 (m, 1 H); 2.47 – 2.40 (m, 1 H); 2.37 – 2.31 (m, 1 H); 1.68 – 1.34 (m, 2 H); 1.32 – 1.20 (m, 6 H); 0.88 (t, J = 7.0, 3 H). ¹³C-NMR (50 MHz, CDCl₃): 159.2; 138.8; 135.9; 131.0; 129.2; 128.1; 127.9; 127.2; 117.0; 113.9; 80.1; 7.99; 72.2; 72.0; 55.2; 35.1; 32.0; 30.4; 25.2; 22.3; 13.9. ESI-MS: 405 ([M + Na]⁺). Anal. calc. for C₂₅H₃₄O₃ (382.25): C 78.49, H 8.96; found: C 78.40, H 8.85.

(4S,5R)-4-(Benzyloxy)-5-[(4-methoxybenzyl)oxy]decan-1-ol (**4**). To a stirred soln. of **9** (7.0 g, 17.9 mmol) in dry THF (3 × 20 ml), BH₃·Me₂S (1.1 ml, 17.9 mmol) was added at 0°, and the mixture was stirred for 3 h at the same temp. Aq. 3M NaOH (6.7 ml), followed by 30% H₂O₂ (6.7 ml), was added at 0°. After stirring for 2 h at 0° and 12 h at r.t., the mixture was extracted with AcOEt (3 × 20 ml). The org. layer was washed with H₂O (20 ml) and brine (10 ml). The combined org. layers were dried (Na₂SO₄), evaporated *in vacuo*, and purified by CC to afford **4** (6.2 g, 87%). $[a]_{55}^{25} = -1.2$ (c = 2.0, CHCl₃). IR: 3432, 1612, 1513, 1459, 1249. ¹H-NMR (200 MHz, CDCl₃): 7.38 – 7.20 (m, 7 H); 6.86 (d, J = 8.0, 2 H); 4.69 (d, J = 14.0, 1 H); 4.62 (d, J = 14.0, 1 H); 4.52 (d, J = 14.0, 1 H); 4.66 (d, J = 14.0, 1 H); 3.78 (s, 3 H); 3.60–3.45 (m, 4 H); 2.98 (br. s, 1 H); 1.74–1.42 (m, 6 H); 1.36–1.18 (m, 6 H); 0.89 (t, J = 7.0, 3 H). ¹³C-NMR (50 MHz, CDCl₃): 159.0; 138.3; 130.9; 129.3; 128.5; 128.0; 127.6; 113.5; 80.8; 79.9; 71.8; 71.6; 62.3; 55.0; 31.9; 30.7; 28.9; 26.5; 25.3; 22.2; 14.0. ESI-MS: 423 ($[M + Na]^+$). Anal. calc. for C₂₅H₃₆O₄ (400.26): C 74.96, H 9.06; found: C 74.90, H 9.02.

Ethyl (2E,6S,7R)-6-(*Benzyloxy*)-7-[(4-methoxybenzyl)oxy]dodec-2-enoate (**10**). To a stirred soln. of 2-iodoxybenzoic acid (IBX; 6.0 g, 15.0 mmol) in DMSO (5 ml) at r.t., **4** dissolved in CH₂Cl₂ (2 × 20 ml) was added. After completion of the reaction (TLC), the mixture was filtered with Et₂O and concentrated. The residue, an aldehyde, was directly used for next step.

To a stirred soln. of the aldehyde (5.6 g, 14.1 mmol) in benzene ($3 \times 20 \text{ ml}$), Ph₃P=CHCOOEt (6.37 g, 18.29 mmol) was added, and the mixture was heated to 60° for 2 h, and then concentrated in *vacuo*. The residue was purified by CC to give **10** (6.2 g, overall 88%). [α]_D²⁵ = -10.1 (c = 2.2, CHCl₃). IR : 2928, 1717, 1606, 1513, 1460, 1255, 1169. ¹H-NMR (200 MHz, CDCl₃): 7.40–7.20 (m, 7 H); 7.00–6.82 (m, 3 H); 5.78 (d, J = 16.0, 1 H); 4.69 (d, J = 12.0, 1 H); 4.61 (d, J = 12.0, 1 H); 4.51–4.42 (m, 2 H); 4.17 (q, J = 7.0, 2 H); 3.82 (s, 3 H); 3.58–3.43 (m, 2 H); 2.44–2.30 (m, 1 H); 2.28–2.14 (m, 1 H); 1.87–1.75 (m, 1 H); 1.70–1.57 (m, 2 H); 1.50–1.41 (m, 2 H); 1.39–1.20 (m, 8 H); 0.89 (t, J = 7.0, 3 H). ¹³C-NMR (50 MHz, CDCl₃): 166.9; 159.1; 149.0; 138.5; 131.0; 129.6; 128.2; 128.0; 127.8; 121.6; 113.8; 80.2; 79.9; 72.1; 72.0; 61.1; 55.2; 32.1; 30.5; 28.1; 28.0; 25.9; 23.8; 14.1; 14.0. ESI-MS: 491 ([M + Na]⁺). Anal. calc. for C₂₉H₄₀O₅ (468.29): C 74.33, H 8.60; found: C 74.29, H 8.52.

Ethyl (6S,7R,2E)-6-(*Benzyloxy*)-7-*hydroxydodec-2-enoate* (**11**). To a stirred soln. of **10** (4.0 g, 8.54 mmol) in CH₂Cl₂/H₂O 9:1 (40 ml), DDQ (2.33 g, 10.26 mmol) was added at 0°, and the soln. was stirred for 30 min at r.t. The reaction was quenched with sat. NaHCO₃ soln. (20 ml), and the mixture was extracted with CH₂Cl₂ (2 × 20 ml), and washed with H₂O (30 ml) and brine (10 ml). The combined org. layers were dried (Na₂SO₄), concentrated, and purified by CC to afford **11** (2.5 g, 86%). [α]_D²⁵ = -20.8 (c = 2.2, CHCl₃). IR : 3454, 1719, 1664, 1455, 1272. ¹H-NMR (200 MHz, CDCl₃): 7.40 - 7.28 (m, 5 H); 7.0 - 6.89 (m, 1 H); 5.79 (d, J = 16.0, 1 H); 4.52 (d, J = 12.0, 1 H); 4.49 (d, J = 12.0, 1 H); 4.17 (q, J = 7.0, 2 H); 3.89 - 3.81 (m, 1 H); 3.37 - 3.30 (m, 1 H); 2.46 - 2.32 (m, 1 H); 2.30 - 2.17 (m, 1 H); 1.85 - 1.72 (m, 1 H); 1.66 - 1.56 (m, 1 H); 1.50 - 1.22 (m, 11 H); 0.89 (t, J = 7.0, 3 H). ¹³C-NMR (50 MHz, CDCl₃): 166.8; 148.9; 138.2; 128.1; 127.3; 121.5; 81.2; 71.9; 71.1; 60.2; 32.2; 31.8; 29.9; 28.2; 27.0; 26.1; 22.8; 14.1; 14.0. ESI-MS: 371 ([M + Na]⁺). Anal. calc. for C₂₁H₃₂O₄ (348.23): C 72.38, H 9.26; found: C 72.30, H 9.21.

Ethyl [(2R,5S,6R)-5-(*Benzyloxy*)*tetrahydro-6-pentyl-*2H-*pyran-2-yl*]*acetate* (**3**). A soln. of **11** (2.0 g, 5.75 mmol) in dry THF (20 ml) was added to a stirred suspension of 'BuOK (1.29 g, 11.49 mmol) in dry THF (10 ml) at -20° , and the mixture was stirred for 1 h. The reaction was quenched with sat. aq. NH₄Cl (10 ml), and the mixture was extracted with AcOEt (30 ml), and washed with H₂O (10 ml) and brine (5 ml). The combined org. layers were dried (Na₂SO₄), concentrated, and purified by CC to afford **3** (1.46 g, 73%). [a] $_{25}^{25}$ = +25.4 (c = 1.0, CHCl₃). IR : 3452, 2926, 2856, 1738, 1187, 1086. ¹H-NMR (200 MHz, CDCl₃): 7.88–7.29 (m, 5 H); 4.62 (d, J = 12.0, 1 H); 4.46 (d, J = 12.0, 1 H); 4.13 (q, J = 7.0, 2 H); 3.81–3.70 (m, 1 H); 3.24–3.16 (m, 1 H); 3.12–3.02 (m, 1 H); 2.52 (dd, J = 12.0, 8.0, 1 H); 2.39 (dd, J = 12.0, 6.0, 1 H); 2.25–2.20 (m, 1 H); 1.92–1.76 (m, 2 H); 1.49–1.20 (m, 12 H); 0.92–0.81 (m, 3 H). ¹³C-NMR (50 MHz, CDCl₃): 172.2; 139.3; 129.0; 127.5; 127.3; 81.7; 74.4; 70.8; 70.7; 60.5; 41.1; 32.2; 31.7; 30.9; 29.8; 25.0; 23.2; 14.6; 14.5. ESI-MS: 371 ([M + Na]⁺). Anal. calc. for C₂₁H₃₂O₄ (348.23): C 72.38, H 9.26; found: C 72.25, H 9.21.

1-[(2R,5S,6R)-5-(Benzyloxy)tetrahydro-6-pentyl-2H-pyran-2-yl]butan-2-one (12). To a stirred soln. of (MeO)MeNH · HCl (0.4 g, 4.3 mmol) in dry THF at -20° , ⁱPrMgCl (Mg, 14.36 mmol; ⁱPrCl, 14.36 mmol) in dry THF was added slowly, and the mixture was stirred for 1 h, and 3 (0.5 g, 1.4 mmol) dissolved in THF was added slowly. The stirring was continued for 1 h. After completion, the mixture was filtered with Et₂O and concentrated. The residue (the Weinreb amide) was directly used for the next step.

The *Weinreb* amide (0.45 g, 1.2 mmol) was dissolved in dry THF (5 ml), and the mixture was cooled to 0°. To this, EtMgI (Mg, 2.23 mmol; EtI, 1.85 mmol) in THF was added slowly at 0°, and the mixture was stirred at r.t. for 2 h. After completion of the reaction, the mixture was treated with sat. aq. NH₄Cl (5 ml) and extracted with CH₂Cl₂ (30 ml). The combined extracts were dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by CC to afford **12** (0.36 g, overall 76%). [α]²⁵_D = +32.2 (c = 0.5, CHCl₃). IR: 3456, 2926, 2854, 1716, 1457, 1258, 1085. ¹H-NMR (500 MHz, CDCl₃): 7.38–7.30 (m, 5 H); 4.52 (d, J = 12.0, 1 H); 4.47 (d, J = 12.0, 1 H); 3.78–3.71 (m, 1 H); 3.20–3.15 (m, 1 H); 3.08–3.02 (m, 1 H); 2.70–2.61 (m, 1 H); 2.53–2.42 (m, 2 H); 2.41–2.36 (m, 1 H); 2.26–2.22 (m, 1 H); 1.91–1.82 (m, 1 H); 1.80–1.74 (m, 1 H); 1.61–1.55 (m, 2 H); 1.38–1.21 (m, 7 H); 1.04 (t, J = 7.0, 3 H); 0.89 (t, J = 7.0, 3 H). ¹³C-NMR (125 MHz, CDCl₃): 210.2; 139.1; 130.1; 128.3; 127.6; 81.2; 78.4; 74.1; 70.7; 48.2; 37.0; 31.8; 31.7; 30.8; 30.2; 24.9; 23.2; 14.6; 7.8. ESI-MS: 355 ($[M + Na]^+$). Anal. calc. for C₂₁H₃₂O₃ (332.24): C 75.86, H 9.70; found: C 75.75, H 9.67.

*1-[(2*R,55,6R)-*Tetrahydro-5-hydroxy-6-pentyl-2*H-*pyran-2-yl]butan-2-one* (**1**) [3]. To a soln. of naphthalene (0.15 g, 1.2 mmol) in THF (5 ml) was added Li metal (0.01 g, 0.9 mmol) in small pieces. The mixture was stirred at r.t. under Ar, until Li metal was completely dissolved (*ca*. 3 h). The resulting dark green soln. of lithium naphthalenide was then cooled to -25° , and then **12** (0.1 g, 0.3 mmol) in THF (4 ml) was added dropwise over 5 min. The resulting mixture was stirred at -25° for 2 h. The reaction was quenched with sat. aq. NH₄Cl (3 ml). The resulting soln. was extracted with Et₂O (2 × 10 ml). The combined extracts were washed with H₂O and brine, dried (Na₂SO₄), filtered, and concentrated. The crude product was then purified by CC to afford **1** (62 mg, 86%). [a]²⁵₂ = +12.3 (c = 0.7, CHCl₃). IR: 3422, 2933, 2862, 1711, 1459. ¹H-NMR (300 MHz, CDCl₃): 3.80–3.64 (m, 1 H); 3.31–3.21 (m, 1 H); 3.07–2.98 (m, 1 H); 2.66 (dd, J = 15.0, 8.0, 1 H); 2.55–2.43 (m, 2 H); 2.37 (d, J = 15.0, 5.0, 1 H); 2.12–2.04 (m, 1 H); 1.85–1.69 (m, 2 H); 1.65 (br. *s*, 1 H); 1.50–1.37 (m, 2 H); 1.36–1.23 (m, 7 H); 1.05 (t, J = 7.2, 3 H); 0.86 (t, J = 6.8, 3 H). ¹³C-NMR (75 MHz, CDCl₃): 210.1; 82.3; 74.5; 70.6; 48.4; 36.8; 33.0; 31.7; 31.6; 30.8; 25.0; 22.5; 14.2; 7.6. ESI-MS: 265 ([M + Na]⁺). Anal. calc. for C₁₄H₂₆O₃ (242.19): C 69.38, H 10.81; found: C 69.30, H 10.75.

(2R,3S,6R)-*Tetrahydro-6-(2-oxobutyl)-2-pentyl-2H-pyran-3-yl Acetate* (2) [3]. To a stirred soln. of 1 (30 mg, 0.12 mmol) in dry CH₂Cl₂ (2 ml), Et₃N (0.02 ml, 0.18 mmol) was added at 0°, and the mixture was stirred for 20 min. Ac₂O (0.01 ml, 0.15 mmol) was added at 0°. The mixture was warmed to r.t., stirred for 4 h, and then diluted with CH₂Cl₂ (25 ml). The org. layer was washed with H₂O (5 ml) and brine (2 ml), dried (Na₂SO₄), and concentrated, and the residue was subjected to CC to obtain 2 (32 mg, 90%). [α]₂₅²⁵ = +22.2 (*c* = 1.0, CHCl₃). IR: 2928, 2856, 1739, 1460, 1372. ¹H-NMR (300 MHz, CDCl₃): 4.47–4.41 (*m*, 1 H); 3.80–3.74 (*m*, 1 H); 3.25–3.20 (*m*, 1 H); 2.68 (*dd*, *J* = 15.0, 8.0, 1 H); 2.54–2.42 (*m*, 2 H); 2.39 (*dd*, *J* = 15.0, 5.0, 1 H); 2.17–2.11 (*m*, 1 H); 2.03 (*s*, 3 H); 1.77–1.72 (*m*, 1 H); 1.64–1.56 (*m*, 1 H); 1.52–1.30 (*m*, 2 H); 1.34–1.18 (*m*, 7 H); 1.02 (*t*, *J* = 7.2, 3 H); 0.86 (*t*, *J* = 6.8, 3 H). ¹³C-NMR (75 MHz, CDCl₃):

209.9; 170.2; 79.4; 74.3; 72.1; 48.2; 37.1; 31.9; 31.7; 30.7; 29.3; 24.8; 22.5; 21.3; 14.2; 7.5. ESI-MS: 307 ($[M+Na]^+$). Anal. calc. for C₁₆H₂₈O₄ (284.20): C 67.57, H 9.92; found: C 67.49, H 9.84.

REFERENCES

- S. Lu, P. Sun, T. Li, T. Kurtán, A. Mándi, S. Antus, K. Krohn, S. Draeger, B. Schutz, Y. Yi, L. Li, W. Zhang, J. Org. Chem 2011, 76, 9699.
- J. N. Kumar, B. Das, *Tetrahedron Lett.* 2013, 54, 3865; C. R. Reddy, B. Veeranjaneyulu, S. Nagendra, B. Das, *Helv. Chem. Acta* 2013, 96, 505; C. R. Reddy, B. Das, *Tetrahedron Lett.* 2014, 55, 67; P. Jangili, J. Kashanna, G. C. Kumar, Y. Poornachandra, B. Das, *Bioorg. Med. Chem. Lett.* 2014, 24, 325.
- [3] P. R. Krishna, R. Nomula, D. V. Ramana, *Tetrahedron Lett.* 2012, *53*, 3612; P. J. Reddy, A. S. Reddy, J. S. Yadav, B. V. S. Reddy, *Tetrahedron Lett.* 2012, *53*, 4054; D. Clarisse, F. Fache, *Tetrahedron Lett.* 2014, *55*, 2221; J. Zeng, Y. J. Tan, J. Ma, M. L. Leow, D. Tirtorahardjo, X.-W. Liu, *Chem. Eur. J.* 2014, *20*, 405.
- [4] A. Sharma, S. Gamre, S. Chattopadhyay, *Tetrahedron Lett.* 2007, 48, 3705; S. Bujaranipalli, G. Chander Eppa, S. Das, *Synlett* 2013, 24, 1117; D. Ramesh, S. Rajaram, P. Prabhakar, U. Ramulu, D. K. Reddy, Y. Venkateswarlu, *Helv. Chim. Acta* 2011, 94, 1226; P. R. Krishna, P. V. Arun Kumar, *Helv. Chim. Acta* 2012, 95, 1623.
- [5] B. E. Maryanoff, A. B. Reitz, *Chem. Rev.* 1989, 89, 863; B. Das, B. Veeranjaneyulu, P. Balasubramanyam, M. Srilatha, *Tetrahedron: Asymmetry* 2010, 21, 2762.
- [6] N. Wahlström, J. Slätt, B. Stensland, A. Ertan, J. Bergman, T. Janosik, J. Org. Chem. 2007, 72, 5886; F. C. Nising, S. Bräse, Chem. Soc. Rev. 2012, 41, 988.
- [7] H. Fuwa, A. Saito, M. Sasaki, Angew. Chem., Int. Ed. 2010, 49, 3041.
- [8] J. S. Yadav, S. Das, J. S. Reddy, N. Thrimurtulu, A. R. Prasad, *Tetrahedron Lett.* 2010, 51, 4050; J. M. Williams, R. B. Jobson, N. Yasuda, G. Marchesini, U.-H. Dolling, E. J. J. Grabowski, *Tetrahedron Lett.* 1995, 36, 5461; K. R. Prasad, P. Anbarasan, *Tetrahedron: Asymmetry* 2006, 17, 850.

Received June 11, 2014